Инерционность установки пожаротушения

Инерционность установки пожаротушения – время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента установки пожаротушения до начала подачи огнетушащего вещества в защищаемую зону. Инерционность установки пожаротушения существенно зависит от: типа установки пожаротушения; способа пуска; протяжённости трубопроводов; времени выхода на режим отдельных элементов установки (насосов, устройств управления и т.п.).

Индивидуальный пожарный риск – частота поражения отдельного человека в результате воздействия ОФП. Индивидуальный пожарный риск используется как критерий допустимости пожарной опасности для персонала объекта. При оценке пожарного риска для населения индивидуальный пожарный риск принимается равным потенциальному пожарному риску. При его определении учитывается время пребывания той или иной категории персонала в опасной зоне с высокими значениями потенциального риска.Литература: Руководство по оценке пожарного риска для промышленных предприятий. М., 2006.

Инициирование горения – воздействие источника повышенной температуры на вещество и материал, приводящее к возникновению горения. Источниками инициирования горения являются: горящие или накалённые тела; электрические разряды в газах; тепловые проявления химических реакций и механических воздействий; искры от удара и трения; ударные волны; солнечная радиация, электромагнитные и др. излучения.

Источник



Инерционность установки пожаротушения

«. 3.34. Инерционность установки пожаротушения: время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента пожарного извещателя, спринклерного оросителя либо побудительного устройства до начала подачи огнетушащего вещества в защищаемую зону. «

«СП 5.13130.2009. Свод правил. Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования» (вместе с «Методикой расчета параметров АУП при поверхностном пожаротушении водой и пеной низкой кратности», «Методикой расчета параметров установок пожаротушения высокократной пеной», «Методикой расчета массы газового огнетушащего вещества для установок газового пожаротушения при тушении объемным способом», «Методикой гидравлического расчета установок углекислотного пожаротушения низкого давления», «Общими положениями по расчету установок порошкового пожаротушения модульного типа», «Методикой расчета автоматических установок аэрозольного пожаротушения», «Методикой расчета избыточного давления при подаче огнетушащего аэрозоля в по.

Официальная терминология . Академик.ру . 2012 .

Смотреть что такое «Инерционность установки пожаротушения» в других словарях:

инерционность установки пожаротушения — 3.34 инерционность установки пожаротушения : Время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента пожарного извещателя, спринклерного оросителя либо побудительного устройства до начала подачи… … Словарь-справочник терминов нормативно-технической документации

Инерционность установки — время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента до начала подачи огнетушащего вещества (состава) в защищаемую зону. Примечание. Для установок пожаротушения, в которых предусмотрена задержка… … Словарь-справочник терминов нормативно-технической документации

Инерционность установки — Время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента до начала подачи огнетушащего вещества (состава) в защищаемую зону. Примечание:. Для установок пожаротушения, в которых предусмотрена задержка… … Словарь черезвычайных ситуаций

инерционность установки — время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента до начала подачи огнетушащего вещества (состава) в защищаемую зону. (Смотри: НПБ 88 01. Установки пожаротушения и сигнализации. Нормы и правила … Строительный словарь

НПБ 88-2001*: Установки пожаротушения и сигнализации. Нормы и правила проектирования — Терминология НПБ 88 2001*: Установки пожаротушения и сигнализации. Нормы и правила проектирования: Автоматическая установка пожаротушения установка пожаротушения, автоматически срабатывающая при превышении контролируемым фактором (факторами)… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 53288-2009: Установки водяного и пенного пожаротушения автоматические. Модульные установки пожаротушения тонкораспыленной водой автоматические. Общие технические требования. Методы испытаний — Терминология ГОСТ Р 53288 2009: Установки водяного и пенного пожаротушения автоматические. Модульные установки пожаротушения тонкораспыленной водой автоматические. Общие технические требования. Методы испытаний оригинал документа: 3.1… … Словарь-справочник терминов нормативно-технической документации

инерционность МУПТВ — 3.3 инерционность МУПТВ: Время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента пожарного извещателя, спринклерного оросителя либо побудительного устройства до начала подачи огнетушащего вещества в… … Словарь-справочник терминов нормативно-технической документации

Инерционность (время срабатывания) модуля (батареи) — 2.7. Инерционность (время срабатывания) модуля (батареи) время с момента подачи на модуль (батарею) пускового импульса до момента начала истечения газового огнетушащего вещества. Источник … Словарь-справочник терминов нормативно-технической документации

инерционность распределительного устройства — 3.4 инерционность распределительного устройства: Время с момента подачи на устройство пускового импульса до момента начала истечения из него огнетушащего вещества. Источник … Словарь-справочник терминов нормативно-технической документации

Инерционность автоматической установки пожарной защиты резервуара — 3.5. Инерционность автоматической установки пожарной защиты резервуара инерционность автоматической установки охлаждения резервуара, входящей в состав данной установки. Источник … Словарь-справочник терминов нормативно-технической документации

Источник

Газовые, аэрозольные и порошковые АУПТ: особенности и сфера применения

Все автономные и автоматические установки пожаротушения по виду огнетушащего вещества подразделяются на жидкостные, пенные, газовые, аэрозольные и порошковые. Расскажем более подробно
о трех последних видах установок, поскольку именно они могут быть использованы на объектах, где традиционные виды пожаротушения — жидкостное или
пенное — могут привести в порче имущества или не обеспечить требуемого эффекта. Кроме того, газовые, аэрозольные и порошковые АУПТ объединяет
высокое значение быстродействия. Их инерционность (или задержка реагирования) составляет всего 5 секунд.

· техническим регламентом о требованиях пожарной безопасности, утвержденным Федеральным законом от 22 июля 2008 года № 123-ФЗ;

· правилами противопожарного режима в Российской Федерации, принятыми постановлением Правительства РФ от 25 апреля 2012 года № 390;

· сводом правил СП 5.13130.2009 «Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические»;

· правилами промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением (ФНП), утвержденными приказом Ростехнадзора от
25 марта 2014 года № 116;

Кроме этого:  Снятие и установка стартера Peugeot 206 Пежо 206

· национальными и межгосударственными стандартами (ГОСТами);

· нормами пожарной безопасности (НПБ);

· другими специальными сводами правил и строительными нормами.

АУПТ являются неотъемлемой частью общей системы противопожарной защиты в тех зданиях и сооружениях, тип и функциональное назначение которых приведены в
таблице «А.1» свода правил СП 5.13130.2009.

Различия автономных и автоматических установок пожаротушения

Технологически все АУПТ — автономные и автоматические — состоят из двух основных рабочих блоков:

1) подсистемы обнаружения и запуска;

2) подсистемы пожаротушения, срабатывающей по сигналу устройства запуска.

В автоматических установках обе эти подсистемы связаны воедино посредством прибора приемно-контрольного и управления (ППКУ) — сложного многофункционального программно-аппаратного комплекса, заключенного в пожарную
панель и пульты управления, а подсистема обнаружения пожара представляет собой разветвленную сеть датчиков-извещателей, объединенных через ППКУ шлейфами. Таким образом, автоматические
АУПТ — это совокупность множества автоматических устройств с разными функциями, соединительных шлейфов, а также электронных, механических и гидравлических (или газодинамических)
узлов, широко распределенных территориально.

Автономные АУПТ — это такие автоматические установки пожаротушения, которые осуществляют функции обнаружения и тушения возгораний независимо от системы управления и внешних
источников питания. Подсистема запуска в них может быть снабжена устройствами пиротехнического (посредством взрыва) или электрического (посредством замыкания цепи) типа, которые
получают команды от исполнительного устройства после реагирования детектора на определенные факторы пожара или ручного пуска. Но не только независимость от
внешнего электропитания и управления делает автоматические установки автономными. Другими качествами являются компактность и простота исполнения (см. рис. 1), позволяющие их
размещать и использовать внутри электрических шкафов, серверных стоек, терминалов самообслуживания, тоннелей для инженерных коммуникаций и пр. Важным отличительным моментом является
то, что к автономным АУПТ не предъявляется обязательное требование интеграции с автоматической системой сигнализации (АУПС), о чем сказано в пункте
4.2 свода правил СП 5.13130.2009. Поэтому автономные установки рекомендовано применять для локального тушения возгораний — отдельных пожароопасных участков (пункт 1
норм НПБ 110-03) и электротехнического оборудования (пункт 11.6 того же свода правил).

Рис. 1. Самосрабатывающие модули и огнетушители

В сущности, самой примитивной автономной установкой пожаротушения можно назвать полиэтиленовый баллон, наполненный водой или другим огнетушащим веществом (ОТВ), и подвешенный,
например, к потолку. В этом случае роль подсистемы обнаружения и запуска пожаротушения будет выполнять полимерная оболочка нужной толщины, лопающаяся при
заданной температуре окружающей среды, а роль ОТВ — обычная вода расчетного объема.

Точно таким же образом, единичный модуль пожаротушения с порошковым, газовым или аэрозолеобразующим веществом, может выступать автономной установкой, если снабдить его
детекторами факторов пожара и устройством запуска — подачи управляющего сигнала на выпуск ОТВ. Частным случаем самосрабатывающих модулей пожаротушения (и автономных
АУПТ вообще) являются самосрабатывающие огнетушители (см. рис. 2), о применении которых упоминается, в особенности, в пункте 7.3.12 свода правил «СП
54.13330.2016. Здания жилые многоквартирные. Актуализированная редакция СНиП 31-01-2003» и пункте 3.31 свода правил «СП 156.13130.2014. Автозаправочные станции. Требования пожарной безопасности.
Актуализированная редакция НПБ 111-98*».

Образно выражаясь, автономные АУПТ можно назвать «минами наоборот», которые, взрываясь, защищают от катастрофического развития пожара.

Рис 2. Огнетушитель самосрабатывающий порошковый

Итак, можно заключить, что основные различия между автономными и полноценными автоматическими установками пожаротушения заключаются:

· в способах управления и электроснабжения;

· в сложности функционирования;

· в габаритах исполнения;

· в площади зоны контроля.

Некоторые современные автономные установки имеют функцию сигнализации и могут объединяться в группы и системы, состоящие из нескольких модулей пожаротушения. В
связи с этим вышеприведенные отличия носят достаточно условный характер, о чем косвенно свидетельствует нормативно-техническая документация, где об автономных АУПТ сказано
предельно мало.

Газовые АУПТ (АУГПТ)

(ГОСТ Р 50969-96, ГОСТ Р 53280.3-2009, ГОСТ Р 53281-2009, ГОСТ Р 53282-2009, ГОСТ Р 53283-2009, ГОСТ Р 56459-2015НПБ 78-99, НПБ 79-99, НПБ 54-2001)

Газовые АУПТ способны успешно ликвидировать пожары классов A, B, C и E, но запрещены к тушению возгораний класса D, а также самовозгорающихся
и с внутренним тлением мелкодисперсных веществ и материалов (пористых и сыпучих). Поскольку все газовые огнетушащие вещества (ГОТВ) являются неэлектропроводными, ими
рекомендуется тушить пожары, возникающие в помещениях с электронным и компьютерным оборудованием. А так как они не обладают разрушающим воздействием на
материальные ценности, то газовые АУПТ часто устанавливают в библиотеках, архивах, музеях, ЦОД, банковских хранилищах.

Неоспоримым преимуществом АУГПТ выступает скорость, с которой достигается эффект:

· 10 секунд требуется для тушения пожара класса А хладонами;

· 60 секунд — при использовании сжатых газов.

Основной принцип работы АУГПТ заключается в вытеснении воздуха в очаге пожара газовым огнетушащим веществом и снижении в помещении концентрации кислорода
(до 12%), необходимого для поддержания процесса горения. Дополнительными факторами тушения выступают способность поглощать тепло (углекислый газ, ФК-5-1-12) и подавлять реакцию
горения на химическом уровне (хладоны).

ГОТВ в отличие от большинства других огнетушащих веществ выполняют тушение возгораний по всему объему помещения, а не только по поверхности.
Но эта особенность требует расчета негерметичности объекта контроля, который производится по специальным методикам (формулам и таблицам), прописанным в ГОСТах и
сводах правил.

Высокие эксплуатационные качества автоматических установок газового пожаротушения проявляются в сравнительной простоте их обслуживания и длительном сроке службы.

Конструкция газовой АУПТ состоит из:

· баллонов-ресиверов с огнетушащей смесью (обычно объединенных общим коллектором в батареи) или изотермических резервуаров;

Кроме этого:  Винтовые компрессоры с частотным преобразователем ДЭН 160ШМ Оптим

· наборной и пусковой секций;

· трубопровода с насадками;

В АУГПТ может использоваться газ в одном из двух состояний: сжиженном (углекислота и хладоны) или сжатом (азот, аргон и их смеси).

Все смеси на основе инертных газов не имеют запаха и цвета, изготавливаются преимущественно с использованием аргона — например, аргонит (азот
+ аргон в равных пропорциях) и инерген (азот + аргон с добавлением 8% углекислого газа). Концентрация углекислоты на уровне 8%
не случайна, до этого предела она оказывает только сильное возбуждающее действие на нервную систему, а при более высокой концентрации —
отравления различной тяжести, на уровнях 25–40% даже при кратковременном воздействии наступает летальный исход. Азот и аргон абсолютно нетоксичны, но инерген,
в состав которого они входят, еще более безопасен во время тушения, поскольку небольшая доза углекислоты заставляет человека чаще дышать, потребляя
больше кислорода.

Большинство хладонов сами по себе безопасны для человека, токсичными могут быть продукты их термического разложения, и это необходимо учитывать при
расчете АУГПТ для применения в помещениях с людьми (см. табл. 1). Кроме того, некоторые хладоны, например, хладон 114В2 и хладон
13В1, несмотря на высокую эффективность, являются агрессивными разрушителями озона и поэтому в России разрешены к использованию только на спецобъектах особой
важности. К озоносберегающим относятся хладоны 23, 125, 227еа и ФК-5-1-12, их ODP — озоноразрушающий потенциал — равен нулю. Самым безопасным
фторкетоном из всех хорошо изученных считается хладон 23, он признан исследовательской компанией P&M разрешенным к использованию в помещениях с постоянным
пребыванием людей, например, в офисах. Второе место по безопасности занял хладон 227еа, а вот хладон 125 может использоваться в местах
постоянного пребывания людей с существенным ограничением: в течении первой минуты эвакуации его концентрация не должна превышать 7,5%, что считается расчетной
кардиотоксической дозой NOAEL (No Observed Adverse Effect Level).

Таблица 1. Безопасность различных ГОТВ по токсичности и остаточной концентрации кислорода в помещении

Поскольку резкое падение содержания кислорода в помещении или токсичность некоторых газов и смесей может привести к асфиксии (удушью), потере сознания
и даже смерти, перед применением большинства ГОТВ необходима эвакуация людей с использованием противопожарной автоматики. Поэтому при выборе типа ГОТВ, особенно
на объектах с классами функциональной пожарной опасности Ф2 и Ф3, обязательно учитывается токсичность газовых смесей, скорость и процент заполнения контролируемого
объема.

Следует также отметить, что, во-первых, огнетущащая концентрация хладонов на порядок ниже, чем сжатых газов — всего 7–15% (об.) против 35–40%
(об.), во-вторых, современные хладоны лишены многих вышеназванных опасных для людей свойств. Это касается, например, фторкетона ФК-5-1-12, известного под торговым названием
Novec™ 1230, который был изобретен в стенах лабораторий американской корпорации 3М (см. рис. 3). Фторкетон ФК-5-1-12 легко и безопасно транспортировать
в емкостях без давления, он имеет химически нейтральный состав и без труда заправляется в резервуары на месте. Novec™ 1230 можно
использовать в уже существующей системе трубопроводов, старых, ранее смонтированных для других хладонов, поскольку это вещество требует минимального давления при тушении
— всего 24,8 бар. Для сравнения — при использовании прочих ГОТВ необходимо нагнетание давления в трубопроводах АУГПТ в диапазоне от
40 бар (хладоны 125, 227еа и 318Ц) до 300 бар (инерген)!

Рис 3. Фторкетон ФК-5-1-12 (Novec™ 1230)

Напомним, что поддержание требуемого уровня давления в трубопроводах требуется, чтобы в нормативное время успеть создать в помещении пожаротушащую концентрацию ГОТВ,
без чего невозможно сохранение материальных ценностей. В то же время быстро нагнетаемое избыточное давление в зоне тушения (примерно 0,4 бара
при использовании сжатых газов) создает угрозу разрушения строительных конструкций и порчи электроники, поэтому на объекте должны быть предусмотрены клапаны сброса
давления.

Аэрозольные АУПТ

(ГОСТ Р 53284-2009, ГОСТ Р 53285-2009, ГОСТ Р 51046-97)

Аэрозольное, как и газовое, относится к объемному пожаротушению. В аэрозольных АУПТ для тушения очагов возгорания используются мелкодисперсные твердые частицы, вырабатываемые генератором огнетушащего аэрозоля (ГОА). В корпусе генератора находится заряд огнетушащего состава
и пусковое устройство, приводящее ГОА в действие (см. рис. 4). Принцип работы установки заключается в подаче смеси из инертных газов
и мельчайших твердых частиц (величина дисперсности около 10 мкм), образующихся в результате сгорания твердотопливного вещества, на очаг возгорания. Мелкодисперсное вещество
перекрывает доступ кислорода к пламени и замедляет реакцию окисления.

Рис 4. Генераторы огнетушащего аэрозоля (ГОА)

Аэрозоли не оказывают вредного воздействия на здоровье человека, а также не наносят вреда материальным ценностям. Благодаря этому аэрозольные АУПТ успешно
применяются для тушения электротехнического оборудования, транспортных средств и т.д. Согласно пункту 10.1 Свода правил, аэрозольные АУПТ рекомендуется использовать для тушения
пожаров класса А2 и В (по ГОСТ 27331) объемным способом в помещениях объемом до 10 000 м 3 и высотой не более 10 м.

Однако, установки аэрозольного пожаротушения, не могут полностью обеспечить прекращение горения, поэтому их не рекомендуется применять для тушения материалов, склонных к
тлению и самовозгоранию (опилки, травяная мука, хлопок и т.д.), химических веществ, способных гореть без доступа кислорода и порошков металлов.

Рис 5. Испытания порошковой АУПТ

Порошковые АУПТ

(ГОСТ Р 51091-97, ГОСТ Р 56028-2014, ГОСТ Р 53286-2009, ГОСТ Р 53280.4-2009, ГОСТ Р 53280.5-2009, НПБ 67-98)

В системах порошкового пожаротушения в качестве огнетушащего средства используется порошок, подающийся под давлением из баллонов в зону возгорания. Облако из порошка охлаждает участок возгорания,
поскольку часть тепла передается частицам порошка, а энергия расходуется на их плавление. Кроме того, существенно уменьшается поступление кислорода к пламени
и замедляется реакция горения (см. рис. 5 выше).

Кроме этого:  Порядок работы с использованием заменителя

Все порошки для тушения пожаров можно условно разделить на порошки общего назначения, используемые для тушения пожаров категорий А, В, С,
и порошки специального назначения, например, для тушения электроустановок, щелочных металлов, тушения лития и натрия и т.д.

Подача порошка к месту возгорания осуществляется с помощью газа высокого давления, закачанного в специальный баллон или путем подрыва пиротехнического газогенерирующего
элемента (см. рис 6).

Рис. 6. Самосрабатывающие модули порошкового пожаротушения (МПП)

Преимущество порошков заключается в их низкой токсичности, они относительно недороги, малоагрессивны к окружающей среде — оказывают минимальное воздействие на материальные
ценности в помещении, а значит сводят к минимуму ущерб от пожара. Их успешно применяют для борьбы с локальными пожарами, например,
при возгорании жидкостей, утечек газа, пожаров на нефтеналивных сооружениях. Однако для тушения материалов, способных тлеть, гореть без доступа кислорода и
склонных к самовозгоранию, порошковые АУПТ малоэффективны. Запрещается использование порошковых АУПТ в помещениях, которые люди не могут покинуть до начала подачи
в них огнетушащего порошка (см. рис. 7) и в которых находится большое количество людей — от 50 человек и более
(пункт 9.1.3 свода правил СП 5.13130.2009).

Рис 7. Система автоматического порошкового огнетушения

Выбор системы автономного или автоматического пожаротушения происходит в несколько этапов:

1) сбор и анализ исходных данных об объекте защиты;

2) расчет критического времени развития пожара;

3) определение метода пожаротушения и типа АУПТ;

4) выбор огнетушащего вещества (ОТВ);

5) предварительный расчет стоимости АУПТ;

6) проектирование и обоснование параметров АУПТ;

7) корректировки, окончательный выбор АУПТ, составление рабочего проекта и сметы.

Источник

Инерционность установок пенного пожаротушения

Согласно ГОСТ Р 50800-95 устройства пенного пожаротушения должны соответствовать таким требованиям:

  • интенсивность подачи огнетушащего вещества не может быть ниже нормативной в течение времени, обозначенного в регламенте;
  • устойчивость установок к внешним факторам определяется нормативной документацией (ГОСТ 15150);
  • время срабатывания также является установленной величиной;
  • в процессе работы под пробным давлением 1,5 Мпа устройство должно оставаться исправным и герметичным.

По надежности электроснабжения установки пенного пожаротушения должны относиться к токоприемникам 1-ой категории.

Пенообразователи в таких устройствах должны выполнять все требования, изложенные в ГОСТ Р 50588. В резерве должны находиться пенообразующие элементы в количестве не менее 10% от числа установленных и не меньше 2%, необходимых для проведения испытаний.

Каждая установка пенного пожаротушения оснащается такими устройствами:

  • контроля давления в заполненных трубопроводах и в импульсном устройстве;
  • автоматической дозировки пенообразователя при его отдельном хранении;
  • перемещения пенообразователя из транспортной емкости;
  • слива огнетушащего вещества из трубопроводов или сосудов, где оно хранится;
  • подачи раствора пенообразователя от мобильной пожарной техники, обеспечивающей наибольший расчетный расход и напор в расчетной секции;
  • контроля уровня в емкостях для воды, пенообразователя и его раствора;
  • перемешивания, если используется раствор пенообразователя.

Инерционность установок пенного пожаротушения

Согласно п. 3.34 СП 5.13130.2009, инерционность установки пенного тушения пожара – это время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента установки пожаротушения до начала подачи огнетушащего вещества в защищаемую зону.

В свою очередь под временем срабатывания установки подразумевается период времени от принятия устройством фактора пожара до начала подачи огнетушащего вещества из самого удаленного и высокорасположенного оросителя установки.

В зависимости от времени срабатывания установки пенного пожаротушения делятся на:

  • быстродействующие – продолжительность срабатывания до трех секунд;
  • среднеинерционные – время срабатывания дне более 30 секунд;
  • инерционные – продолжительность срабатывания от 30 до 180 секунд.

Инерционность установки пенного пожаротушения зависит от следующих факторов:

  • типа оборудования;
  • способа пуска установки;
  • протяженности и диаметра трубопроводов;
  • длительности выхода на режим некоторых элементов устройства (насосов, элементов управления и т.д.).

Примерная инерционность для спринклерных водозаполненных и дренчерных установок с пневмопуском составляет 300 с, для спринклерных воздушных – 500 с, а для дренчерных с электропуском – 200 с.

Установки объемного пенного пожаротушения могут срабатывать несколько дольше (на 10 секунд, не больше). Это специально установленная задержка времени, предназначенная для вывода людей из горящего здания, которая входит в значение инерционности.

Источник

Инерционность установки пожаротушения это

Инерционность установки пожаротушения — время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента установки пожаротушения до начала подачи огнетушащего вещества в защищаемую зону.

Инерционность установки пожаротушения существенно зависит от:

  • типа установки пожаротушения;
  • способа пуска;
  • протяжённости трубопроводов;
  • времени выхода на режим отдельных элементов установки (насосов, устройств управления и т. п.).

Ориентировочные значения инерционности установок пожаротушения:

  • спринклерные водозаполненные — 300 с;
  • спринклерные воздушные — 500 с;
  • дренчерные с электропуском — 200 с;
  • дренчерные с пневмопуском — 300 с;
  • газовые — 15 с;
  • порошковые — 5-10 с;
  • аэрозольные — 5 с.

Для установки объёмного пожаротушения и в ряде других случаев предусматривается временная задержка подачи огнетушащего вещества, предназначенная для эвакуации людей при пожаре в помещении и остановки технологического оборудования. Временная задержка подачи огнетушащего вещества зависит от количества людей в защищаемом помещении, протяжённости и ширины путей эвакуации, ряда других факторов. Значение временной задержки должно быть не менее 10 секунд от момента включения в помещении устройств оповещения о пожаре и об эвакуации. Временная задержка в инерционность установки пожаротушения не входит.

Источник