Типы подшипников для вентиляторов

Для многих электронных систем, в частности тех, которые размещаются в шкафах управления, вентиляторы являются важным компонентом, предназначенным для поддержания температуры воздуха системы в пределах рекомендуемых температур, обеспечивая оптимальную работу электроники и ее полный срок службы. Были попытки найти альтернативные методы управления температурой, но ни один из них не оказался столь же эффективным и рентабельным, как вентилятор.

Вентилятор работает с помощью ротора, который вращается на подшипнике, вытесняя воздух. Надежная работа подшипника является ключевым моментом в конструкции вентилятора, поскольку вентилятор может вращаться тысячи раз в минуту и ??должен иметь многолетний срок службы. Этот процесс подвергает подшипник огромной нагрузке, поэтому важно, чтобы он соответствовал поставленной задаче.

С точки зрения потребителя различные типы подшипников имеют отличия по трем самым важным параметрам: сроку работы на износ, величине шума при работе и стоимости. Конструкции подшипников делятся на две основные группы: подшипники скольжения и подшипники качения, оба они встречаются в вентиляторах для шкафов управления и автоматики.

У каждого из этих типов вентиляторов есть свои плюсы и минусы, которые мы и рассмотрим в данной статье.

Вентиляторы с подшипниками скольжения

Тип:

Конструкция:

простая конструкция, состоящая из втулки, внутри которой вращается вал. Втулка покрывается смазочным антифрикционным материалом.

Уровень шума:

низкий для новых подшипников, при износе уровень шума значительно повышается

Срок службы:

относительно небольшой, в идеальных условиях 35 000 часов

Стоимость:

наиболее дешевый тип подшипников для вентилятора

Конструкции вентиляторов с подшипниками скольжения являются недорогими, прочными и простыми, что привело к их широкому использованию во многих областях. Прочная конструкция гарантирует, что они могут работать во многих неблагоприятных условиях, а их простота означает, что они менее склонны к сбоям.

Центральный вал вентилятора с подшипником скольжения заключен в конструкцию в виде втулки с маслом для смазки для облегчения вращения. Втулка обеспечивает защиту вала и обеспечивает удержание ротора в правильном положении, сохраняя зазор между ротором и статором.

Рис.1: Схема подшипника скольжения

Для получения правильного размера зазора между валом и втулкой может потребоваться балансировка. Слишком малый зазор приводит к увеличению трения, что затрудняет запуск вентилятора и потребляет больше энергии. Если зазор слишком большой, ротор может раскачиваться. Второй недостаток конструкции втулки заключается в том, что втулка является единственной физической средой, удерживающей ротор на месте, и со временем вал будет разрушать отверстие подшипника. Это явление усугубляется, если ротор всегда вращается в одном и том же направлении, что в конечном итоге приведет к тому, что отверстие приобретет овальную форму, что приведет к более шумной работе и сокращению срока службы. Если вентилятор перемещать или переориентировать, подшипник будет разрушен в разных местах и ??станет неровным, что приведет к еще большему колебанию и шуму. К тому же, конструкция втулочного типа требует маслосъемных колец и майларовых шайб, чтобы предотвратить утечку смазки, которая вызывает большее трение на валу и препятствует выходу газов. Захваченный газ превращается в частицы нитрида, которые затрудняют движение и могут сократить срок службы вентилятора.

Вентиляторы с подшипниками скольжения можно найти во многих конструкциях, особенно в тех, которые работают при нормальных температурах и на статическом оборудовании. Конструкции вентиляторов с подшипниками скольжения широко используются в таких приложениях, как компьютерное и офисное оборудование, приборы HVAC и шкафы управления и автоматики.

Часто говорят, что вентиляторы с подшипниками скольжения, как правило, создают меньше шума во время работы, что позволяет широко использовать их в тихих местах, например в офисах. Считается, что данный тип подшипников существенно тише, в сравнении с более сложными конструкциями подшипников качения, однако такое утверждение лишь частично справедливо.

Кроме этого:  Пандусы для инвалидов закон нормы и требования

Новые только что изготовленные подшипники скольжения имеют идеальную не высохшую и не загрязненную смазку. В таких условиях действительно, их уровень выделяемого при работе шума значительно ниже, чем у подшипников качения. Однако со временем при работе вентилятора смазка начнет высыхать, и вентилятор начнет работать намного более шумно, даже могут появиться дополнительные сторонние шумы. Поэтому если рассматривать долгосрочную перспективу, то предпочтительнее все же использовать подшипники качения для вентиляторов в шкафах управления и автоматики.

Высыхание любой смазки является неотвратимым естественным процессом, который невозможно избежать. При высыхании или просто загустении смазочного материала функционирование вентилятора окажется под угрозой. Именно из-за высыхания смазки у подшипников скольжения срок службы значительно более короткий, в сравнении с шариковыми подшипниками. С другой стороны, если вам нужен недорогой вентилятор – подшипники скольжения позволят приобрести устройство охлаждения за небольшие деньги.

Если мы вычисляем срок службы вентилятора скольжения, то учитывать нужно не только свойства смазочного материала, но и температуры при которых подшипник будет работать. Если вентиляторы будут работать при небольших температурах, то экономически выгоднее будет купить вентиляторы с подшипниками скольжения, потому как при температуре до 20 градусов срок их службы не сильно уступает вентиляторам с шарикоподшипниками. Особенно если заботиться о том, чтобы в вентилятор не попадала пыль. Однако уже при 40 градусах срок службы подшипников скольжения снижается почти втрое.

Источник



Типы подшипников в корпусных вентиляторах

Активное охлаждение компонентов компьютера уже давно ни для кого не является новостью. Пользователи так сильно увлечены воздушными потоками, давлением внутри корпуса, что забывают о том, что не каждый вентилятор подходит на отведенную ему роль в полной мере. И не последнее значение в этом играет тип подшипника вентилятора.

Немного истории

Изначально подшипники выглядели совсем не так как сейчас. Как следует из названия, это то, во что упирается шип.

Простая конструкция за счет малого диаметра оси создает большое отношение плеч рычага и даже большой коэффициент трения не создает существенного противодействия вращению. А что бы износ был как можно меньше, в качестве подшипника используется более твердый материал. Сегодня такая конструкция встречается в механических часах.

Так или иначе прогресс взял свое, и современные конструкции уже более совершенны.

Подшипник скольжения

Традиционный спутник бюджетных вентиляторов. Внешне максимально простая конструкция, состоящая из латунной втулки и стального вала, но в своей работе не так уж и проста.

Небольшая разница в диаметре вала и втулки заполнена маслом. При вращении вала силы трения между валом и маслом нагнетают масло в место соприкосновения вала и втулки, создавая давление масляного клина. Если это давление будет достаточно большим, оно предотвращает контакт вала и втулки.

h — толщина слоя смазки, ω — угловая скорость вращения вала, d — диаметр вала, P — величина нагрузки, s —средний зазор, e — эксцентриситет

Как видно из рисунка слабым местом этого подшипника является то, что давление прилагается только с одной стороны вала — это не способствует гашению вибраций, а даже наоборот вызывает их при малой величине нагрузки.

По мере работы нагрев делает масло более жидким, что уменьшает давление масляного клина. Также нагрев способствует ускорению испарения масла и в итоге вал с втулкой начинает контактировать. При повышении окружающей температуры на 20 градусов срок эксплуатации такого подшипника снижается в 3 раза. То есть, для вентилятора с обычным подшипником скольжения наиболее удачным будет место с низкой температурой. А для уменьшения, микровибраций, которые изнашивают втулку и в итоге становятся слышимыми вибрациями нужна нагрузка на вал. Такие условия в сборке башенного типа актуальны только на фронтальной панели.

Кроме этого:  Установка кнопки старт стоп прадо 120

По мере усовершенствования этого типа подшипника появились самосмазывающиеся вариации, а также с винтовой нарезкой. Их особенностью является большее количество масла, доступное для смазки, а также некоторое подобие насоса за счет винтовых конструкций, обеспечивающее циркуляцию масла в любом положении.

Использование полиоксиметилена (POM) также идет на пользу. Этот материал частенько используют в редукторах дешевого электроинструмента. Но в данном случае это замена мягкой втулки из медного сплава, которая в редукторе рассыпалась бы моментально. Полимерный материал уменьшает коэффициент сухого трения и появление частиц с абразивными свойствами, которые в свою очередь ускоряют износ.

Все эти ухищрения не устраняют полностью недостатки конструкции подшипника скольжения, хотя и позволяют ему проработать несколько лет даже в неудачном положении. Наиболее живучим будет вентилятор, имеющий защиту IP6X. В нем применяется герметизирующая втулка для защиты от пыли, которая также мешает испаряться и вытекать маслу.

Гидродинамический подшипник

Считается вечным, ведь пока в нем есть масло, вал и втулка не могут соприкоснуться. Это обеспечивается особым профилем либо втулки, либо вала, обеспечивающих повышенное давление в некоторых участках. Обычно это встречные косые углубления на втулке. Их проще выполнить в мягком металле, не нарушая балансировки вала. Но на практике может встретиться все что угодно, щедро сдобренное маркетинговыми названиями.

Как видно по результатам моделирования, повышенное давление действует на вал со всех сторон. За счет этого вал меньше вибрирует и практически исключается контакт со втулкой. Но главная проблема подшипников скольжения — высыхание масла тут тоже присутствует. И добавляется еще одна: в лежачем положении масло, по мере высыхания, либо скопится в масляной камере (при этом некоторые конструкции исключают достаточное поступление масла за счет капиллярного эффекта), либо постепенно будет покидать подшипник через недостаточно герметичное уплотнение вала.

И ко всему этому еще добавляется очень большая восприимчивость к работе на низких оборотах. Давление масла зависит от оборотов, и если они будут недостаточны, то гидродинамический подшипник превращается в обычный подшипник скольжения. Недаром производители зачастую ограничивают нижнюю частоту вращения вентиляторов с гидродинамическими подшипниками в 600 оборотов в минуту. Но даже с таким ограничением пользователи отмечают появление посторонних звуков.

Подшипники с магнитным центрированием

Большая часть вентиляторов пользуется магнитной левитацией за счет притяжения постоянного магнита ротора и полюсов статора. Убедиться в наличии магнитной левитации просто — достаточно вдоль оси потолкать крыльчатку. Она свободно перемещается на некоторое расстояние и тут же возвращается. В вентиляторах с магнитным центрированием добавляют еще один магнит, придающий больше жесткости, и упор оси вала, который может быть выполнен как из пластика, так и из гидродинамического подшипника.

Дополнительная жесткость уменьшает вибрацию вала на низких оборотах и позволяет гидродинамическому подшипнику работать на любых оборотах и в любом положении.

Подшипник качения

Как можно понять из названия, принцип его работы основан на качении. Чем тверже материал, меньше шероховатость поверхности и точнее детали, тем дольше прослужит такой подшипник. Чем ниже рабочие обороты в подшипнике качения, тем дольше он проработает (даже в перерасчете на суммарное количество оборотов).

Ориентация в пространстве на работе никак не сказывается, поэтому вентиляторы на его основе можно применять в любой части сборки.

Но такой подшипник шумный, что делает его применение на низких оборотах бессмысленной затеей, и с течением времени создаваемый шум растет постепенно. Наиболее долговечная разновидность выполняется из керамики.

А самую тихую модификацию без сепаратора, в которой шарики не создают шума постукиванием друг о друга, скорее всего в компьютерных вентиляторах мы никогда и не увидим.

Кроме этого:  Как собрать узел распределения холодной воды

Заключение

Подшипники компьютерных вентиляторов имеют свои слабые и сильные стороны, учитывая которые можно избежать ускоренной поломки и бессмысленных трат.

Обычный подшипник скольжения дешевый, быстро выходит из строя, но на фронтальной панели может прослужить вполне долго.

Самосмазывающиеся подшипники, особенно с применением пластика (POM) и класса защиты IP6Х могут работать в любой части сборки, не уступая в долговечности другим типам.

Гидродинамический подшипник в самом простом исполнении даже капризнее чем обычный подшипник скольжения. Оптимальным будет использование на оборотах, близких к максимальным, если избегать «лежачего» положения.

Магнитное центрирование позволяет гидродинамическим подшипникам работать в любом положении и оборотах.

Подшипник качения самый надежный, но шумный. Зачастую заранее предупреждает о своей грядущей поломке повышенным шумом, что позволяет избежать внезапной остановки.

Источник

Подшипник в кулерах имеет значение

Пришел давеча клиент и попросил ему рассказать о корпусных кулерах. В довес моим пояснениям нашел прекрасный материал на просторах интернета. Решил поделиться, может кому нибудь пригодиться .

Подшипник скольжения (sleeve bearing)

Простейший тип подшипника, состоит из втулки, покрытой антифрикционным материалом, внутри которой вращается вал.

Уровень шума — В исправном состоянии — низкий, однако при износе таких подшипников кулеры в целом начинают сильно шуметь из-за вибрации.

Ресурс — Относительно невысокий и сильно зависит от эксплуатационной температуры и вибрационных нагрузок. У современных вариантов заявляется ресурс до 35 тысяч часов, однако он достижим только в идеальных условиях, на практике такие подшипники служат в два-три раза меньше.

Стоимость — Самый дешёвый тип подшипника.

Подшипник скольжения c винтовой нарезкой (rifle bearing, Z-Axis bearing)

Подшипник скольжения со специфическими нарезами на втулке и оси, осуществляющими рециркуляцию смазывающей жидкости.

Уровень шума — Низкий

Ресурс — Существенно выше чем у простейших подшипников скольжения и приближается к FDB-подшипникам.

Стоимость — Немного выше, чем у обычных подшипников скольжения, но ниже, чем у FDB-подшипников.
____

Гидродинамический подшипник (FDB bearing)

Усовершенствованный подшипник скольжения, в котором вращение вала происходит в слое жидкости, постоянно удерживающейся внутри втулки за счёт создающейся при работе разницы давлений.

Уровень шума — Низкий

Ресурс — Существенно выше, чем у подшипников скольжения, заявляются цифры до 80 тысяч часов, однако в реальных эксплуатационных условиях эту цифры также стоит уменьшить минимум вдвое.

Стоимость — Выше, чем у обычных подшипников скольжения, но ниже, чем у подшипников качения.
____

Источник

Подшипники для насосов и вентиляционных установок

На узлы насосов воздействуют относительно высокие радиальные и осевые силы. В таких узлах обычно применяется установка, фиксированная опора — свободная опора. Наиболее часто используются для насосов радиальные шариковые подшипники, однорядные радиально-упорные шариковые подшипники или конические роликовые подшипники, установленные по Х -, О-образной схеме или схеме тандем, цилиндрические роликовые подшипники, радиальные или упорные сферические роликовые подшипники. Для узлов конвейерных винтов в винтовых шпиндельных насосах пригодны цилиндрические роликовые подшипники, двухрядные радиально-упорные шариковые подшипники с четырехточечным контактом.

Подшипниковые узлы вентиляционных установок

Для того чтобы утечка через засор в компрессоре была минимальной, необходим жесткий зазор в направляющих подшипниковых узлов. Некоторые компрессоры работают с очень высокой частотой вращения, поэтому следует уделять особое внимание пригодности подшипников для высоких частот вращения. Наиболее применимы подшипники с четырехточечным контактом, цилиндрические роликоподшипники и радиально-упорные шарикоподшипники.

Например, для вентиляторов существуют специальные подшипниковые блоки VRE3 марки FAG , изготавливаемые в шести вариантах для различных величин нагрузки. В трубчатые неразъемные стационарные корпуса встраиваются радиальные шарикоподшипники, спаренные радиально-упорные шарикоподшипники и цилиндрические роликоподшипники.

В качестве опоры вала рабочего колеса, роторного вала, больших вентиляторов и воздуходувочных машин применяются радиально-упорные шарикоподшипники, цилиндрические роликоподшипники или сферические подшипники.

Источник